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FOREWORD

Development of the ATLAS integrated structural analysis and
design system was initiated by The Boeing Commercial Airplane Company in
1969. Continued development efforts have resulted in the release and
application of several extended versions of the system to aerospace and
civilian structures. Those capabilities of the current ATLAS version
developed under the NASA Langley Contract No. NAS1-12911 include the
following: geometry control, thermal stress, fuel generation/management,
payload management, loadability curve generation, flutter solution,
residual flexibility, strength design of composites, thermal fully
stressed design, and interactive graphics. The NASA monitor of this
contract was G. L. Giles. The inertia loading capability was developed
under the Army Contract No. DAAG46-75-C-0072.

This document is one volume of a series of documents describing
the ATLAS System. The remaining documents present details regarding the
input data and program execution, data management, system design, the
engineering method used by the computational modules, and
system-demonstration problems.

The key responsibilities for development of ATLAS have been
within the Integrated Analysis/Design Systems Group of the Structures
Research Unit of BCAC and the ATLAS System Group of the BCS Integrated
Systems and Systems Technology Unit. R. E. Miller, Jr. was the Program
Manager of ATLAS up to 1976 after which K. H. Dickenson assumed this
position. The current ATLAS System is the result of the combined efforts
of many Boeing engineering and programming personriel, Those who
contributed directly to the current version of ATLAS are as follows:

B. F. Backman H. B. Hansteen F. D. Nelson

G. N. Bates B. A. Harrison M. C. Redman

L. C. Carpenter J. M. Held R. A. Samuel

R. E. Clemmons M. Y. Hirayama M. Tamekuni

R. L. Dreisbach J. R. Hogley G. von Limbach

W. J. Erickson H. E. Huffman S. 0. Wahlstrom
S. H. Gadre D. W. Johnson R. A. Woodward

F. P. Gray A. S. Kawaguchi K. K. Yagi

D. W. Halstead C. D. Mounier :
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ABSTRACT

This document describes the automated design theory
underlying the operation of the ATLAS Design Module. The
methods, applications and limitations associated with the fully
stressed design, the thermal fully stressed design and a regional
optimization algorithm are presented herein. A discussion of the
convergence characteristics of the fully stressed design is also
included. Derivations and concepts specific to the ATLAS design
theory are shown, while conventional terminology and established
methods are identified by references.

iv



CONTENTS
Page

“0 INTRODUCTION .-o..-.....Qo....n‘o..’..l.o...c.-ca.n.'c.. 1.1

2.0 OVERVIEAW OF THEORY wccccesecconscccccnsccacccanncncacccce 2o1

2.1 OPTIMALITY VERSUS DIRECT SEARCH eccccosccocaccccnna 22
. FULLY STRESSED DESIGN ecceccescccecscccncoccscnncsccse 23
. THERMAL FULLY STRESSED DESIGN eccceaccccscscncccocea 29
REGIONAL OPTIMIZATION .ccccececcccncccccccscncanncos 2o

NN
= Wi

o

3.0 OP
3.

TMATITY CRITERIA .cccccecocosnnorscsannccsncconanasces
FULLY STRESSED DESIGN THEORY ececevennscscecccsames
3.1.1 Strength Criterion .c..cceccececncovencancacaas
3.1.2 Buckling Criterion c.cececcnccccccnccocsccasa
3.1.3 Equivalent Margin of Safety .c..ccececcncacee
3.1.4 Local IteratiOn ..cececeenmcccnccancccanccnsasn

3.2 THERMAL FULLY STRESSED DESIGN THEORY .ccceceecvcacnce

3.2.7T Strength Criterion .cceccecccccsncccncasssas

- b

1 » [] | ]

= ood b O U LS N e
OO L) -

Wwwwiwwwww

4.0. COMPOSITE OPTIMIZATION c.cecevcnossconconcocomnsossannasns
4.1 REGIONAL OPTIMIZATION METHOD ccecececovccscavasmans
B.7.1 CONStraintsS cccaacecescsscansscncsssansensae

4.1.2 Criticality cecccccacesccscascccascccncanns

4.2 LOCAL OPTIMIZATION .ceoncoscnconssconccsncscsasesnosn
4.2.1 Laminate Constitutive Relations ...eccecenns

4.2.2 Lamina Stress and Strain sececsvccsccsscase

4.2.3 Math-Programming MethOod ecceceececciccccccces

EEEEFEEEF
L2 T T

[ 2 I

b owd e SN VDN -
[P Y

EPPENDIX FIMTE ELEMmW DESIGI« a s 8 08 6 e oo esa e s Hea e KE

o

APPENDIX CONVERGENCE OF THE FULLY STRESSEU DESIGN ....

L]
b

APPENDIX

A
B

APPENDIX C SIGNIFICANT AUTOMATED DESIGN APPLICATIONS ... C.1
D COMPOSITE TERMINOLOGY «cwcnonccecvecsecncacesce Dal
E

REFEREWES & 5 OO L 5SSO0 0 N 0C0COAGO0RNEE GRS ESORENTEOHNEESL D R.’



Number

NV

(S0}

C.1
C.2
C.3

D.1

FIGURES
Page

Thickness After Une CYCle .eecceemeccscacccceacses 2.5
Thickness After Five CycleS cececceccscaccncasccse 2.0
Thickness After Ten CyCleS .cecececonscccccncsnencs 2a7

Change of Thickness at the Edge of
Cirwlar Hole - 0 MBS OGO R OO0 oA RS BEED SO OO ®O e On T O 2.8

Total Weight for Different Design Cycles ....cvec.. 2.8
Ratios of Areas Produced by the T.F.S.D.
and F.S.D. Methods as a Function of Applied

MeChanical Stress LI S S A A B NI A I N R B N A A S N 3.15

Criticality Comparison;
T‘FOSQD' (axial p}-us Shear) a0 aGee 08 0860 &0 s b 3‘18

Regional Definition ...cccececccccccaccsaccacansesa 4.2
Arrow Wing Structural Weight ....ceceeccecccccnceces Co2
NST Structural Weight .cccciceccaccscrarasacacacsass C
Computer Time Requirements for One Cycle ......... C.3
D.2

Typical Lamina ™i® ....ccccccennccoconsnccancanccca

vi



NOTATION

This list of notation complements the explanations provided
in the text. Subscripted variables are only indicated with a dot
in the following list and are explaimnmed in their proper context.

A. Design variable; area

b Distance

b Design variation coefficient

B Design variation matrix

C Cosine of fiber direction (o)

Cy Value of equality constraint

d Value of inequality constraint

D,D. Laminate constitutive matrix

DY Lamina constitutive matrix

Dn Design variation matrix

e Subscript

€ Exponent

E,E. Moduli of elasticity

E* Derivative of modulus of elasticity with respect to
stress

E. Element subsets (see ref. [10])

£,f. Applied stress

f. Facﬁor

F,F.,F' Allowable stress; (vector)

F. Derivative of allowable stress with respect to thickness

9, Constraint function
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R,R.

R.

Wi ,W

Shear modulus

Sum of inverted squares of allowable axial stress
Subscript

Unit matrix

Subscript

Subscript; buckling coefficient

Correction term |

Subscript

Reciprocal of squared shear allowable stress
Margin of safety

Subscript

Reciprocal of squared shear allowable stress
Endload

Subscript

Force

Lamina compliance matrix

Stress ratio

Interaction function

Derivative of interaction function with respect to
thickness ~

Sine of fiber direction ()
Thickness; design variable
Allowable stress matrix
Weight factor; (vector)

Weight
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X Subscript; vector

Y Subscript

z Subscript

a Fiber direction; reciprocal of squared axial allowable
stress

B,Y Reciprocal of squared allowable stress

8 Kronecker delta

A Difference operator

e,eqf' Strain; (vector)

v Gradient

AqlJX Lagrange multipliers; (vector)

v Poisson's ratio

P Density

a, 0.,3 Stress; (vector)
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1.0 INTRODUCTION

The analysis segment of the structural design process has,
for a reasonably long time, been supported by finite element based
software. This support has resulted in practical and economical
stress analysis of complex structures, like supersonic transport
airplanes, As the design process, however, .also requires
repeated improvements and parametric changes of alternative
structures, especially during the preliminary design phase, there
is a great nesd for automated resize (design) methods.

The ATLAS Design Module has been developed to satisfy these
needs as far as strength and stability considerations are
corncerned. The methods have been developed and selected for
application to large problems, (21000 design variables). -Some
recent applications can be found in appendix C.

'+ should ke noted that the methods presented here are only
intended as computational _aids in the design process.
Engineering judgement is a required foundation for successful
usage. This applies to the preparation of input data for the
Design Module as well as interpretation and evaluation of the
results.

A judicious use, however, has been shown to produce both
practical and economical benefits. It relieves the engineer of
time consumring numerical tasks and makes him available for other
design related activities (see refs. [1}[3]).
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2,0 OVERVIEW OF THEOFY

The general problem being addressed in this document involves
the minimization of the structural weight (weight of the
stifrness finite elements),

W= W(tl,...,tn) (2.1)

where tj represents "n" design variables subject to both the
equality constraints

£ (Egreeenty) = C (2.2)

wherse K=1,s4., Isn,
and the inequality constrairts

gy (tyre.art )< 4y (2.3)

The constraints are of stress type which involve strenrngth and
stability requirements that must be satisfied simultaneously.

The problem identified above is clearly of optimization type.
The solution of this problem will be approached from two
viewpoints., One involves optimality criteria methods, whereas
the other one corncerns itselr with "math-programming" and local
optimization,
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2.1 OPTIMALITY VERSUS DIRECT SEARCH

The optimality criteria and the direct search method can
produce minimum weight designs. Caution is advised, however, as
this is not always the case.

The "math-programming®” methods (ref, [4]) are of direct
search type which normally produce a "local® minimum. The
computational state~of-the~art is, however, such that problems
involving thousands of design variables are not practically
solvabkle by these methods because of the cost and time factors.
The “math-programming® methods are, therefore, limited to small
ar.d moderate size problems for which they work quite well.
kecent developments involving the conjugate gradient method (ref.
[5]) have shown promise for moderately large proklems.

The optimality criteria methods (ref, {6]) are of indirect
type, i.e. no explicit minimization is required. Instead, a set
of criteria is defined in such a manner that, when satisfied, a
minimum or "almost" minimum is produced., Intuitive arguments are
often used in selection of the criteria and consequently there
will not be any guarantees that a "low-weight-design" has been
achieved, Caution is clearly needed in interpretation of
results. Experience shows, however, that optimality criteria
gquite successfully can be used to establish good resize
procadures, and that for large problems these methods are the
only feasible ones.
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2.2 FULLY STRESSED DESIGN (F.S.D.)

The "fully stressed design"” method (F.S.D.) is of optimality
criterion type. It represents the traditional way of sizing
aerospace structures. That is to say, areas, thicknesses, etc.
are chosen so that the applied loads yield stresses that are
e2qual to the allowables. The redistribution of internal loads
due to changes in structural properties is not considered until
the next "stress-analysis," which consequently defines an
iterative method based on repeated reanalyses.

The method could be defined by the equations {(2.2) when m=n.
This yields a system of "n" equations in "n" unknowns. Solutions
are, therefore, possible without any formal minimization steps.
‘This is, however, in general a system of nonlinear equations for
which convergence, uniqueness and a starting point must be
evaluated separately for each application. '

The literature on automated design has an akundance of
examples of the F.S.D. method producing undesirable results. The
example illustrated herein is a square plate with a central
circular hole (figs. 1-5). This example is selected because the
F.S.D. method is known to give poor results for this kind of
problems - The first three figures show the change in thickness
distrikution. The fourth shows how the presence of several load
cases tend to dampen the changes. Finally, figure 5 shows how
stable the weight can be despite significant local changes.

It is a well-known fact that the F.S.D. method works well for
statically determinate structures. The main reason for this
success is that a change in area or thickness for one member only
changes the stress in that member and nowhere else. A matrix
cortaining the derivatives of member stresses with respect to
design variable would be diagonal for this case.
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It is also true that for large structural models, like the
ones used in the aerospace industry, the effect of changing a
size variable is localized. This causes the matrix of the
derivatives with respect to the size variables to be strongly
diagonal. As shown in references [7] and [8], this improves the
chances of the F.S.D. to be optimum and to converge rapidly.
Practical structures are quite often designed by multiple load
conditions, a fact which also tends to improve the convergence
behavior of the F.S.D. approach. (see e.g. ref. [3]).

The F.S.D. method implemented in ATLAS is designed to be
controlled by the user through input constraints and during
execution by convergence specifications. The user can specify
upper and lower bounds, input margins of safety, fixed values and
regions to be excluded from resizing, (see ref. [10]}) and by so
doing influence the convergence characteristics. '

It is finally noted that the "fully stressed design®™ method
must be used with discretion and that results require judicious
interpretation. When used in the preliminary design process it
must be supported by experienced engineering personnel. However,
it is still quite feasible to use it as a computational aid in
the large problem environment. 1t is also quite frequent that
the method produces consecutive designs with very minor weight
changes even when member sizes exhibit significant changes (see
figs. 4 and 5). In conclusion, it is noted that the "fully
stressed design® method is presently one of the few practical
approaches to large problems.
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2.3 THERMAL FULLY STRESSED DESIGN (T.F.S.D.)

The "fully stressed design® method is based on the assumption
that internal element loads remain constant during resizing. A
consequence of this assumption is that the following resize
algorithm can be formulated

(2.4)

where Ag ey 15 the "new" value of the design variable, f is the

applied stress, F is the allowable stress and A 4 the design
variable value used when "f" was calculated.

The algorithm shown by eguation (2.4) has often been deemed
adequate for resizing of structures subjected to mechanical
loads. However, for structures with significant thermal
influences it can lead to very slow convergence. The main reason
for this is that stresses due to thermal effects quite often
remain reasonably constant while the mechanical stresses change
with changing size variables. An algorithm intended for
situations involving significant thermal stresses has been
developed and tested. Results and conclusions are shown in
reference [11]. A combination of thermal and mechanical stresses
is considered and the resize algorithm is,

= £ 2.5
Apew F-f As14 (2.3

where the notation is the same as in equation (2.4) and "f¢ "
represents the applied thermal stress, It is demonstrated in
reference [11] how the use of this algorithm results in faster

convergence than produced by the traditional "fully stressed
design. "
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2.4 REGIONAL OPTIMIZATION

The successful application of "math-programming" methods in
the large proklem environment is contingent on the use of
strategies that reduce a large problem to a set of smaller ones.
That philosophy has been applied to the “composite optimization."
This optimization is kased on the method of feasible direction
and is orly used for structural models containing the composite
elements CFLATE and CCOVER (see sec. % and ref. [10]).

Local optimization is used and total loads on the composite
elements are assumed constant. The change in internal load
distribution is, as for the F.S.D. method, introduced through the
repetition of the stress analysis.

The regional concept is introduced in such a manner that
results, produced in the optimization, are valid for all elements
in the region. These regions (subsets) are defined in the input
data.

The number of design variables available within the region is
determined by the number of element variables., {311l elements in
a region have the same number of variables). The number of
constraints are, however, dependent on both the number of
elemente included in the subreqlon (see sec, 4) and the number of
loada cases involved.

Criticality (relative value of constraints) of all the load
cases is established during the initial phase of the
optimization., This criticality is used to reduce the number of
constraints, applied in the numerical search, to a number that is
the same as the number of design variables.

The problem defined in this manner is thus cornsiderably

reduced in size and quite feasibly solved by "math-programming®
methods.
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3,0 OPTIMALITY CRITERIA

The role of optimality criteria in automated design has been
discussed extensively in the technical literature. It seems to
be a cormon conclusion (see e.g. ref. [ 9]) that these kinds of
methods, in the case of large structural systems, appear to be
the most practical. Appendix C contains problems which presently
cannot be solved directly by "math-programming® methods, and are
consequently natural candidates for optimality criteria-based
resizings. It is, however, also clear that for the size~range
where "direct search" methods are applicable they constitute a
guite natural complement to the optimality criteria approaches.

The ATLAS Lesign Module contains two optimality criteria
methods, the "fully stressed design" (F.S.D.) and the *"thermal
fully stressed design" (T.F.S.D.). Both methods are based on
repeated reanalysis, and convergence criteria can be of both
weight and variable type.

Both the F.S.D and the T.F.S.D. produce "margins of safety"
that are used to update finite element properties. The resize
algorithm used in both cases is,

= Old | .1
Anew- I+MS (1+MS' p) (3 )

where "MS" is a calculated margin of safety and "MSinp " an input
one. The design variables are denoted "A." It should be noted
that all design variables are of "area® and %“thickness" type.

- The details for each element are presented in appendix A,

he "margin of safety" defined here is, as the attentlve
reag er already noticed, of an equivalent nature. It actually
describes how a design variable should be changed so that the
correspornding property value is just adequate for the applied
loads. The more traditional definition of margin, on the other
hand, results in a description of how the applied loads should be
changed, so that applied and allowable stresses agree,

The equivalent margins of safety, as calculated according to
both the F.S.D. and T.F.S.D., are screened and the minima are
used to establish an envelope of margins of safety. This
envelope is used in equation (3.1). -

3.1



3.1 FULLY STRESSED DESIGN THEORY

The "fully stressed design" resize is based on three
criteria. The Hill's criterion for strength (ref. [12]), an
interaction criterion for panel buckling using input table
allowables, and an interaction criterion for local buckling which
uses calculated buckling allowables.,

The "fully stressed .design" uses four kinds of allowable
stresses. There are material allowables, average buckling
allowables, gage~-dependent takle buckling allowables and local .
buckling allowakles., The latter kind is calculated based on
input “modulus tables®" and "spacing® data. The buckling
allowakles are only applicable to plate~like elements.

The calculation of "margins of safety" for buckling using
"gage dependent allowables" involves two options. Both table
allowables and local allowables are gage dependent and the
margins can be calculated either as a first order approximation
or by iteration to convergence. The change in allowable stress
due to change in thickness is considered in both cases.

3.2



3.1.1 Strength Criterion

Hill's criterion (ref. [12]) is used to define failure for
the "non~uniaxial® case. This criterion can be used for

orthotropic materials and can, in its general form, be written

2

- 2 _ 2 - 2 -2
F((Jy ox) +G_(oz ax) +H(ox ay) + 2L'tyz_+ ZMTzx

+ Zeryg_l (3.2)

where "(Q," represents axial stress and " T." shear stresses. The
allowables-~related variables are defined in the following manner,

2F = 1 + 1 .2
F 2 F 2 F 2
y z X
1 1 1
z x y '
S S S |
F 2 F 2 P 2
X y z

where "F.," represents allowable axial stress. The shear related
definitions are,

1 1 1
2L = - 5, 2M = ;——7, 2N = ;~—§ (3.4)
vz zx xy ’

The variakles "F,." represent allowable shear stress. The
plane case is traditionally established by an assumption of

transverse isotropy; i.e. Fy=Fz. The resulting two-dimensional
criterion becowes,

33



Ox\ 2 o [ Oxy\2 04O
B = (‘?‘)'{‘) + (“‘fx) * (“iﬂ> - =5 (3.5)
X Y Xy Fx

where F £1.0 when the criterion is satisfied.

Extensive discussions of this type of criteria can be found
in the literature (see e.g. refs. [12]-[16]). The advantage with
tnis criterion is that it can be shown to reduce to the classical
vor: Mises form for isotropic materials. It should be noted that
orly empirical arguments are available as far as explaining the
aralogy between yielding and failure.
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3.1.2 Fuckling Criterion

Buckling interaction criteria are used for the plate-like
elements in the ATLAS system. Details can be found in appendix
A. Three types of allowables are considered, average buckling
allowakles, gage-dependent table allowables and calculated local
buckling allowables. A discussion of the former two is presented
in reference [ 10] in the DESIGN input section.

The local buckling allowakles are of the form,

F =k‘E(.§_)2 (3.6)

where "b" and the plate aspect ratios are defined in the "DETAIL
DATA" in reference [10]. The assumption is that the geometry
input defines rectangular plates on simple supports. The "k"
values are calculated in accordance with the theory described in
reference [17], {pages 348-406).

The general interaction criterion is,

R®2 + £ Rxe3< 1 (3.7)

- e
R—mfo + f2 v 3Ry S

X

where f; tc f3 and e} to e3 are user specified parameters and
"K," represents ratios between applied and allowable stress. If

the parameters are not input, the following default interaction
expression is used.

R 4 R
R=f[—"%_\ 4 _¥_ (3.8)
2 4
l—ny 1—ny

This exrression represents a parametric fit to results produced
by the classical theory of buckling of simply supported, thin
plates (see e.g. ref. [19]). & discussion of results using this
type of interaction can be found in reference [ 18].
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3.1.3 Equivalent Margin of Safety

It was shown in section 3.0 how the egquivalent margins of
safety determine how the pertinent design variable should be
changed in order to make the applied and allowakle stresses
equal. The general interaction expression can ke written as,

R, = R(to) : (3.9)

and the margin of safety is defined as,

t

. = O 3.10
to+ At 1+MS ¢ )
The ihtention is to change the design variable "t" so that,
R = 1 = R(t_+ Ot) (3.11)
A Taylor exparsion yields,
= = 2 3.12
1 = R(t+ At) = R(t ) + At R'(t)) +0((A)2) (3.12)

L first order approximation and a substitution of the value for At
yields,

~ - .._EE_. '
1~0R° THMS toR (3.13)

and the equivalent margin of safety therefore becomes,

3.6



l—Ro
MSz S ] (3014)
RO 1 toR o

where E'y is the first order derivative evaluated at t=t,.

This is quite clearly an approximation that, for converging
or stabilizing design, becomes increasingly good. It is guite
obvious that there are ranges for which eguation (3.14) is
meaningless, If that happens during the design, the module will
revert back to the strength reguirements and use those instead.
Equation (3.14) can be interpreted as a predictor that tries to
correct for changes in, for example, allowable stress due to
changes in plate thicknesses,

Both of the interaction equations (3.7) and (3.8) can be
written in the form,

R = R(R,,/R./R)) (3.15)

and derivatives of the type required in (3.14) have to include
differentiation of k,, Ry and R, with respect to "t". The stress
ratio Ry is,

N ,
R =__%X__ (3.16)
X EF_(Y)

where Ny, is endload and Fy (t) represents the input table
allowakbles., Differentiation yields,

dRrR ’ .
~——}—{-=-—§-§-. 1+ FX t (3.17)
dt t - Fy

The variable F] symbolizes the derivative of the allowakle
stress with respect to thickness. These derivatives are
obviously not available and the module, therefore, uses
calculated "differences" to establish numerical "slopes" of the
values in the takles,



When calculated local buckling allowables are used, the
typical stress ratio Ry becomes, '

The same terminology as in equation (3.6) is used, and "“Ny"
is the endload in the x-direction. The modulus of elasticity can

be written as a function of applied (0) stress in the following
manner, ,

E = E(0) = E(E:_:&) (3.19)

Differentiation with respect to the design variable (plate
thickness) yields,

N

t

Firally, differentiation of equation (3.18) with respect to
nt» gives,

dR, R, '; N E’ . (3.21)
at ~ & \" "TE

This equation can be rewritten as

dr R ) 2
=_.E>£ (B—R .‘LP__E._'_) (3.22)
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where E', as before, is the derivative of the modulus of
elasticity with respect to aprlied stress., The value of this
derivative is established from calculated differences of the data
in the user supplied modulus tables. Allowakle local shear

stress and shear modulus takles are treated in an analogous
manner.

Expressions like eguations (3.17) and (3.22) must be
evaluated in order to calculate the margin of safety (MS) in
equation (3.14). This equation represents, as already discussed,
a first order approximation. 1In order to inprove on this
equation, a local iteration is used as shown in section 3.1.4,

The concept of "equivalent margin of safety" will finally be
corpared with the traditional approach. The interaction
expression can again ke written as,

which, with "increasing® load, becomes
1= R(Rx+ARx,Ry+ARy,ny+Any) (3.24)

which up to a first order approximation'is,

dR dR 9R
1 =R+ MS[R %= + R + R 22 (3.25)
('xsﬁg YFEY ?yany)

If the "Yequivalent margin of safety" is used, the following
expression is oktained.

MS _
1 = R+(..__%_,.t)93' (3.26)
[=]
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where "MSe" represents "equivalent margln of safety." The
relation between the two kinds of margins. becomes, from
comparison of equations (3.25) and (3.26),

MS

MS = 1+MS (1 + Kl) ‘ | B  (3.27?

where "Kj;" is zero for the case of constant vaiiébles.‘ be small
values for MS,, '

MS = MSg o  (3.28)
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3.1.4 Iocal Iteration

Determination of design variakles, when %"gage dependent
allowakles® are included, involves the solution of the nonlinear
egquation,

R(£) -1=0. . (3.29)

This form immediately brings the "Newton-Raphson method" to
mind (see ref. [20]). The indicated method leads to a solution
of the above equation by using the recurrence relation,

. (3.30)
17 R (ti)

where "i" is the iterative index. A comparison shows that
equation (3.30) is analogous to =quation (3.14); or in other
words the calculation of the "equivalent margin of safety®
represents a first step in a "Newton-Raphson=-like" iteration,

Problems relating to divergence of the scheme suggested by
equation (3.30) must ke avoided. The convergence reguirements
will now be investigated by pursuing the analogy with "equivalent
margins of safety.® Equation {3.14) can be rewritten as,

. £R’ (3.31)
MS 1 - govoeRT |
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The general definition of the lnteractlon eguatlons ylelds
the follow1ng relation,

R'=R'(t) <0 ' (3.32)
which results in the final form | ‘ ~
~ _ler’ |
MS = -1 +‘E_-n-r£'§r[ | . : (3.33)
The definition of margin of safety leads to the‘requirément,
MS > -1 | (3.34)
which gives,

R - 1 +]er?] >0 | (3.35)

The default 1nteract10n is defined by equatlon {(3.8) which
can ke written as,

R, + R

Differentiation with respect to %t" yields

Ir'e ]| 24r,+R, > R . (3.37)

1 72

Sukstitution into (3.36) yields
' 1l
lt;r (ep !> 3 (3.38)

This is a necessary requirement that is enforced during the
iteration. The general interaction criterion in equation (3.7)
leads to the same requirement shown by equation (3.38).
Nurerical experimentation has not produced a single case of
divergence, once the said requirement is enforced.
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3.2 THERMAL FULLY STRESSED DESIGN THEORY

The "thermal fully stressed design" algorithm is developed
for structures subjected to both mechanical and thermal stresses
at the same time., The therral stresses are assumed to be
significant compared to the mechanical ones, but are not allowed
to exceed material allowakle stresses, It is, in addition,
assumed that mechanical internal loads and thernal stresses
rerain constant during resizing., It is, there<fore, obvious that
the thermal stresses cannot be allowed to be larger than the
allowables, as that leads to an impossible situation. In a
practical design situation one would expect that either a new
material would have to ke selectad, or that a less severe thermal
environment be found,

The uni-axial case leads to the following expression,

OB
Mo

where

On =%new" total stress
Oy =rechanical stress (old)
Oih =thermal stress
Bo="01d" area
Ap ="new" area

which results in the "thermal fully stressed design” resize
algorithm,

| In | (3.40)
A = = - A .
n F=0, o |

Here the total stress has been equated with the allowable.

This expression illustrates quite clearly what happens when the
thernal stress approaches the allowable.

It is "tempting” at this point to extend the approach ky
using ratios ketween mechanical stresses and "rmodified
allowables" in the interaction expressions used for the plane
stress case€. The analogy with equation {(3.40) is intuitively
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quite pleasing and has been explored extensively in the aerospace
industry. However, a comparison between the traditional measure
of criticality and the one indirectly suggested here, shows that

in order for these to be equal the following equation must be
satisfied, :

(3.41)

F 'F—uih
which is the case only when,

As this obviously is true only when the ratios in equation

(3.41) are equal to one, we find that the interaction expre581ons
for "plate-like" elements require special attention.

A comparison between the results produced by the T.F.S.D.
method and the F.S.D. method are shown in figure 6., Different

ratios for areas for different stress levels are plotted
according to equation,

1

%n = M | (3.43)
Kg (F- 1:13‘"""1:1:T : o

It is easily seen that quite drastic differences can be
experienced,
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[ 1 i | 1 i 1 3 } N [} b
5 1.0
Ou/F

Fiqure 6. Ratio of Areas Produced by the T.F.S.D. and F.S.D. Methods
as a Function of Applied Mechanical Stress; Oy = .4F
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3.2.1 Strength Criterion

The strength criterion used for the T.F.S.D. is the same as
used for the F.S.D., (see eq. (3.5) ), namely Hill's criterion.
If mechanical and thermal effects are kept separate, the
criterion yields,

N 5 N o [N 2 [N )(N )
X0 —Y+0G \<" XYy = Xy
R=|E % € Y +'( t "%y) _\ET%/I\ETY/) (3.44)

Fx' Fy* . ny ” Fx2

The following simplified terminology has keen used,

N+ = endload due to mechanical loads
Os = thermal stress

F, = allowable stress

t = plate thickness (design variable)

The resizing is now kased on the requirement of zero margin
of safety, (i.e. ER=1.,0). The following second order equation
results, o

2f. O¥
tz ag . “(1-— |+ Bo, * YOyxy -1

N

+ 2t |aN g |1 122N 1 (1 Bx ) |+ BNy O N Oy
2\ o,/ 2 x

N

. 2 2 : ;
+BN N._..2 _
+aN_ (1 ﬁ;g) B y+Y xy> = 0 . (3.45)
X
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The Greek letters are functions of allowables in the
followirg manner,

a=-1,"g=2_, y=-L
F_2 F 2 F_2
X Yy Xy

and the "new" thickness is calculated as the lowest positive root
of equation (3.46).

It is interesting to note how the traditional criticality
approach compares to the one established for wechanical stresses
and "modified allowables," The special case with one axial
stress and shear will be investigated. The traditional way
yields the ellipse, '

2 -

(£ +0)" £ +0__,2
Ix :; 4 (XY ~2:_::[) =1 - | - (3.46)
Fx_. ny . .

and the "modified allowables" approach gives,

B f ’
X y —X 0 =3 (3.47)

A comparison between the two ellipses in figure 7 shows that
the difference (the shaded region) changes with thermal stress
and that quite unconservative designs can result. The "modified®
curve consists of four different ellipses which, for small
thermal stresses, would be a guite good approximation. The
modified criticality ratio can ke written as,

X ~ X + X X (3.48)
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Modified

Traditional

fx+ Oy

= fxy +Oxy

‘Figure 7. Criticality Comparison; T.F.$.D. ( axial plus shear)
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which, for small thermal stresses, becomes,

£ £ C. G. .
Fx—ﬁx F_ - X %

It is furthermore expected that applied mechanical and
allowable stresses will be reasonably close for this case which
yields,

£
x zfi-+?3£.f’3s'zf§;f§ (3.50)
Fx_Qk %« x Fx FX Fx

which cculd be interpreted as a good approximation.
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4,0 COMPOSITE OPTIMIZATION

The conposite optimization in ATLAS is of a "local" type and
is devised for the large problem environment, The method was
developed for application to a composite SST with the number of
design variables exceeding 6000. The composite memkrane
element s, CPLATE and CCOVER, are considered in the optimization.
The CPLATE finite element has up to ten laminas of orthotropic
material with user=-defined fixed directions (see ref. {10])s The
CCCVER is kuilt up from two CPLATE elements. (Terminology can be
fourd in appendix D)

The structure to ke optimized is considered to be divided
into a rumber of regions (optimization problems) which are
treated separately. These regions are defined by the input data
ard car. ke anything from one element to the whole structure. The
- design cf a structure consequently involves the repeated solution
of wesight optimization problens, each of which concerns itself
with a small portion of the structure.,

4.1



4.1 REGIONAL OPTIMIZATION METHOD

. The regional optimization method involves the solution of the
following problem. For a given region (design subset of
elements) E, and an associated subregion (optimization subset) E,
we have ’ ' '

Figure 8. Regional Definition (Ey is a small part

of the structure,and Ey, can be saveral

‘subregions)
larinate strains and a set of initial lamina thicknesses. - Based
on this we want to find the lamina thicknesses "tj",i=1,...,n
where n<10, (analogously upper and lower surface for CCOVER) for
all corposite elements (of the same type and with the same number
of laminas) in Eyg assuming regionally constant results. This is
done in such a manner that minimum weight is produced without
violation of any of the strength constraints in Ei .
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4.1.1 Constraints

The composite optimization is of strength type for which two
optional types of constraints are considered; ™"Hill*s criterion®
-and "the maximum strain criterion"™ (see refs. [14],[15] and

[16]).

The maximum strain criterion, which simply involves the
‘comparison of applied strain to allowable strain for each
component (2 axial and one shear) separately, uses the most
severe one as the representation of criticality. The allowable
strains are produced from input allowable stresses in the
following manner,

i F : (4.1)

where "i¥ represents the lamina and %"k% the laminate. The matrix
" Qm" (in lamina reference trame) is defined as,

' — v —1
11 11
i A S | (4.2)
Eyn Epp ‘
0 0 al_
i 12

{see ref, [14], p 19). The allowable stress vector WF js
defined as, .

-
F xik

Foik (4.3)

nyiK
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Tension allowable stress is used for both "Fyjx " and "Fyjk "
when tension allowable strain is to be produced, and analogously
for compression allowable strain.

The alternative to the maximum strain criterion is Hill's
criterion., This criterion has already been identified in
equation (3.5), but will be shown here in an alternative form.
The criterion can be expressed as,

atp 4.4)
Oix Tix %k € 1.0 (

where " Ojx " represents the stress vector for the "i:th" lamina
of the "k:th" element. The allowables matrix "Iy " is defined
as, - ,

Tik = 1l . _ 1 ) 0
. 2F .
xik xik
1 1 . (4.5)
. -3 2 0 ,
2ink Fyik
0 0 1
2
| o nyig_

The notation used here and in equation (4.3) is

Fyjk = axial allowakle stress in x-direction;
Fyjk = axial allowable stress in y-direction;
Fyyik = Shear allowakle stress;

in all cases for -lamina "i" of element "k®,. Tension or
compressior allowable is selected in accordance with the sign of
the corparable applied stresses. In order to use this criterion
as a bkasis for resizing, we find that certain requirements with
regard to allowakle stresses must be satisfied.
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The quadratic form in equation (4.4) must ke positive
definite, If that would not be the case, it would be possible to
have stress fields for which the expression (4.4) remained
negative, independent of how lamina thicknesses were changed.

The determinant of the matrix T; , equation (4.5), is,

1 1 /1 1
2

det T,, = - — (4.6)
ik g 2 F_% F_2 aF 2
xyik xik yik xik

It is easily seen from this expression that Tjxis not
positive definite when Fyjk >2Fyjk + In order to avoid this
probler, it will be required that the larger axial allowable
stress always defines the primary direction. ’

The two criteria discussed here constitute the baseline for

the constraints used in the optimization., The general form of
the criteria for the maximum strain type is,

RikR.:m?x{ £likj ; j=1,...,3} | (4.7)
] e*ikj 2

and for Hill's,

' .
- T -} (4-8)
Rikll.’(oik Tix%x 2

where the index "% refers to load case and "i" and "k" according
to what was defined earlier.,

A detailed discussion of failure criteria for composites can
be fourd ir references {12]=[ 167,
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4,1.2 criticality

Each optimization problem is solved in an iterative manner.
Each cycle in this iteration contains a screening phase and a
solution phase. :

The screéning phase consists of a search of subset Eyg. This
search establishes the critical element and load case for each
lamina "i*, identifying the following quantities,

Ri = I}I{‘?}i {Rikz,k'—’l,...,ne;2,=l,...,nl} ’ (4'9)

where "ne" denotes the number of elements in Eyg and "nl1” is the
number of load cases to be considered. The "Ryg " s represent
the value produced by the strength criterion used (Hill's
criterion” or *"the maximum strain criterion%: see equations (4.7)
and (4, 8)).

The screening is performed with the objective of establishing
the strength constraints to be used during the solution phase.
This procedure okviously requires all elements in Egs to have the
sare runker of variables (laminas), and subsets containing CCOVER
will ke treated as two independent problems.

The solution phase involves the minimization of weight with
strength constraints defined by the screening. Thus, the defined
optimization problem contains *n" design variakles and "n"
constraints. Here ®"n" is the number of laminas for any plate in
Exs {(upper or lower surface for CCOVER).

The screening is repeated after the local optimization is
completed. If this does not result in "new" critical elements or
load cases, the solution is complete, otherwise an additional
cycle of optimization is performed and is repeated until the
criticality order has stabilized. This is repeated a maximum of
ten times for each proklem.
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4.2 ICCAL OPTIMIZATION

The local optimization is of "math-programming" type that is
concerned with the determination of a minimum weight design for a
laminate. The lamina thicknesses (number of layers in each
larina) are the design variables, and there is one strength
constraint present for each lanina.

The starting point for the optimization is a set of laminate
strainrs and an initial set of lamina thicknesses., The program
establishes a starting point such that at least one lamina
constraint is active. The starting point is determined from the
inforratiorn gained during the screening for criticality. The
initial thicknesses are determined from the input values, if
Hill's criterion is used as,

tis = VRimax * tio‘ - (4.10)

tis = Rimax ° %io (4.11)
where t;s = starting point thickness,
tio = input thickness,
and

Rimak = m?x Ri;i=1,...,n] (4.12)

which establishes a starting point that is an acceptable dssign.

The optimization is local in the sense that the total load on
a laminate is assumed constant during the search. The
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redistribution of internal loads due to changes in laminate
stiffnesses is introduced through reanalysis.
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4.2.1 Laminate Constitutive Relations

A laminate, which in this context represents a CPLATE or an
upper or lower surface of a CCOVER element, has in the general
case an1sotropic “membrane® properties. Each laminate is built-
up of a maximum of ten directional lamxnas, each one with
orthotropic elastic properties.

For a laminate of total thickness "t®™ the follow1ng
constitutive relation is applicable,

when - ,A
O = D€ . {8.13)

where '6 represents gross ®element™ stresses and ¢ the gross
*element® strains. (Element subscripts are dropped for
convenience) . )

Each lamina has, in the local (lamina} reference frame, the
following constitutive equation,

. | L I |

,Ui = Dy &y (4.14)

The theory is based on engineering strains and the strain
transformation is, as easily can be verified in any elementary
textbook,

e

? -l
€y = I4€ (4.15)
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where the transformation matrix "A " is,

a, =[c2 5?2 sc

' (4.16)
s2 2 -sc |

-2sc 2sc c2-g?

Here “C" and "S" are, respectively, the cosine and sine of
the angle (0, see appendix D) between the laminate reference
direction and the lamina primary material direction. The
transformation of stresses kecomes consequently,

5. -1, T3 (4.17)

where "Oj" represents the stresses in lamina "i" referred to the
laminate reference frame, and "GOj" is referred to the lamina
(local) frame. The total endload in the laminate, referred to
the laminate frame can be written as,

n

ot = t Ai? = tDE (4.18)

n
_1 T.' 4.1
D=3z Z t;A;D.A; (4.19)
i=

where "L " is the orthotropic constitutive matrix for lamina "i®,
The coefficients in this matrix are well-known and can, for
example, be found in reference [ 14] page 18, or in appendix D.
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4,2.2 Lamina Stress and Strain

The input to the optimization procedure consists of a set of
initial thicknesses and laminate strains, The optimization
requires the repeated evaluation of stresses or strains as the
design variables change. The lamina thicknesses "t;" are
perpetually compared to the initial values "tj, ", and stresses
and strains are based on the assumption that total laminate load
stays constant,

N = t0 = constant (4.20)

This assumption provides the following expression for the
larinate stresses,

o

g, = (4.21)

°l
= B (o]
)

where "r® indicates new values and "“o" initial values. 1In
addition, total strain compatibility is assumed in the laminate,
yielding the lamina strains,

t
' o -1 = (4.22)
€in =t 2iPh Do %o
n
and the lamina stresses,
N k_’to o' a D_lD + (4.2‘3)
Oin "% Pi2iPn Yo%

Here only "tp" and "D# " are variakles, It should be noted
that, ir +he general case, a different element is "critical® for
each lamira (compare the screening phase in sec. 4.1.2). It is
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guite clear from this situation that all the elements in the

"design sukset®" Epomust have the same number of laminas and
identical orlentations.

In order to illustrate conditions surrounding a stable
criticality situation, sufficiency in a special case will be
shown, It is known that the initial lamina strains for two
element s with the same orlentatlons are related in the- follow1ng
manner,

a . (4.24)
Ri Egk > 24 €01 ,

A change in design variables results in the following
difference between lamina strains,

(tok ok ok ol ol 1)

If koth elements have the same starting point,

o o okl @ 4.25
®ik" %11 T £_ 2iPn Pok (fok™ %1 (4-23)

which results in the same criticality as for the starting point.
It is guite clear that this represents a very sgecial case,
However, it illustrates the phenomenor considered in the repeated
optirization rprocedure, and indications are that initial
criticality guite often is preserved,
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The optimization is based on the method of feasible direction
(see refs., [5] and [21]). The function to be minimized is the
structural weight,

n
W=y Pt (4.26)

where, pi = lamina density
ti = 1lamina thickness
n = nunber of laminas

and the constraints are,

g; = Ri-l £0,i=1,...,n. (4.27)

These constraints are of strength type, as discussed
previously, and defined by equation (4.9).

The method of feasible direction (Zoutendijk's method
descriked in ref. [4]) establishes a direction along which a step
can be taken without violating the constraints, starting from a
specific point in the design space, The feasikle direction is,
ir this rethod, found bty solving a linear programming problem in
which the decrease in the structural weight "W" is maximized
subject to constraints which insure feasibility; i.e. do not
violate the constraints (4.27).

The design variables "t;" are modified prior to *he
optimizaticn, so that the largest constraint is equal to zero.
The same normalization also takes place after the optimization is
completed., Derivatives with respect to design variables, both
for the objective function and the constraints, are established
by using finite differences.
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convergence of the optimization is considered to have been
attained, if, in three consecutive iterations the relative and
absolute change in the value of "W" is less than .001. The
maximur nurber of iterations allowed is ten.

Cconstraints can also be imposed direetly on the design
variakles "t; ". Upper and lower bounds can be defined for each
design variable, and the smallest lower bound is onée layer
thickness. WNo default exists for the upper bounds.

It is, in addition, possikle to define constraints that
equate thicknesses for different laminas. These constraints are
of the type,

ti = tnk;, n = nl, Nyroeee n,

where r<n~1. The resulting minimization proklem involves less

than "n" variables and "n® strength constraints of the type shown
in equation (4.27).
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APPENDIX A
FINITE ELEMENT DESIGN

This appendix contains a condensed description of each
element type as seen from the standpoint of design. A detailed

description of the finite elements is presented in reference
[10]-

Design variables, applied loads, allowables and criteria and
algorithm information are presented for each element type.
Additional information with regard to comnstraints (upper bounds,
lower bounds, fixed data, etc.), allowables used, defaults and
available options is described under "“Design Input Data®™ in
reference [ 10].
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R0D

DESIGN VARIABLES: ONE AREA AT EACH END (2)
APPLIED LOAD: AXIAL FORCE N
ALLOWABLES: MATERIAL ALLOWABLE STRESSES
DESIGN PROPERTIES: NoNE

REMAINING STIFFNESS

PROPERTIES: NoNE | |

DESIGN ALGORITHM: , F.S.D. anp T.F.S.D,
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BEAM

DESIGN VARIABLES: ONE AREA AND TWO SHEAR AREAS AT
| EACH END. (6)
APPLIED LOAD: Two BENDING MOMENTS AND ONE AXIAL

LOAD AT EACH END FOR THE AREA.
Two SHEAR FORCES AT EACH END. ONE
FOR EACH SHEAR AREA,

ALLOWABLES: ~ MATERIAL ALLOWABLE STRESSES

DESIGN PROPERTIES: | SECTION MODULI, TWO AT EACH
END: SHEAR STRESS CONCENTRATION
FACTORS, TWO AT EACH END,

REMAINING STIFFNESS

PROPERTIES: AREA MOMENTS OF INERTIA, THREE AT
EACH END: CHANGED IN THE SAME
PROPORTIONS AS THE AREA AT THE
SAME END.

DESIGN ALGORITHM: F.S.D.

A3



DESIGN VARIABLES:

APPLIED LOAD:

ALLOWABLES::

DESIGN PROPERTIES:

REMAINING STIFFNESS
PROPERTIES:

DESIGN ALGORITHM:

SPAR

Two AREAS FOR EACH CHORD PLUS
WEB THICKNESS. (5)

AVERAGE LOAD FOR EACH CHORD, AND
EQUIVALENT SHEAR FLOW FOR SPAR-WEB.

MATERIAL ALLOWABLE STRESSES., PLUS
SHEAR BUCKLING ALLOWABLES FOR THE
WEB., '

STIFFENER AREA AND SPACING

LUMPED CAP AREAS. CHANGED BY THE
SAME FACTOR AS THE WEB,

F.S.D. anp T.S.F.D.

E:> STIFFENER AREA CHECKED FOR SHEAR CARRIED AS DIAGONAL TENSION.
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DESIGN VARIABLES:
APPLIED LOAD:

ALLOWABLES:

DESIGN PROPERTIES:

REMAINING STIFFNESS
PROPERTIES:

DESIGN ALGORITHM:
DESIGN INTERACTION:

SIZING:

ASSUMPTIONS:

PLATE

PLATE THICKNESS AND TWO SMEARED
STIFFENER THICKNESSES. (3)

MEMBRANE ENDLOAD., TWO AXIAL AND
ONE SHEAR COMPONENT,

MATERIAL ALLOWABLE STRESS
AXIAL BUCKLING ALLOWABLE STRESS

~ SHEAR BUCKLING ALLOWABLE STRESS}
LoCAL AXIAL BUCKLING STRESS }
LoCAL SHEAR BUCKLING STRESS

2 STIFFENER RATIOS

NonE |
F.S.D. anp T.F.S.D,

HILL'S CRITERION FOR STRENGTH
lISER DEFINED INTERACTION FOR
BUCKLING,

PREDICTOR APPROXIMATION,
LOCAL ITERATION: BOTH FOR GAGE
DEPENDENT ALLOWABLES

TENSION IS NEGLECTED IN BUCKLING
INTERACTION - STIFFENERS USE THE
SAME ALLOWABLES AS THE PLATE

EE>>INPUTGAGE DEPENDENT TABLES. EZ>> CALCULATED.,

AOS

B>
B>



DESIGN VARIABLES:
APPLIED LOAD:

ALLOWABLES:

DESIGN PROPERTIES:

REMAINING STIFFNESS
PROPERTIES:

DESIGN ALGORITHM:

DESIGN INTERACTION:

SIZING:

ASSUMPTIONS:

GPLATE

Up TO FIVE THICKNESSES: ONE AT EACH
CORNER AND ONE IN THE MIDDLE. (5)

 MEMBRANE ENDLOADS ONLY., TWO AXIAL -

AND ONE SHEAR COMPONENT.
MATERIAL ALLOWABLE STRESS -

AXIAL BUCKLING ALLOWABLE STRESS
SHEAR BUCKLING ALLOWABLE STRESS [:>,
LoCAL AXIAL BUCKLING STRESS }523’

LOoCAL SHEAR BUCKLING STRESS
NoNE

BENDING THICKNESSES, UNCHANGED.
FlSlDl | -

HILL'S CRITERION FOR STRENGTH.
USER DEFINED FOR BUCKLING.

LocAL ITERATION FOR GAGE DEPENDENT
ALLOWABLES

AVERAGE MEMBRANE STRESSES ARE
REPRESENTATIVE! BENDING STRESSES
ARE SMALL AND NOT DESIGNING.,

EZ>>INPUT GAGE DEPENDENT TABLES. EZ>> CALCULATED. E§>>BASED ON

AVERAGE GAGE
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SPLATE

DESIGN VARIABLE: ONE THICKNESS (1)
APPLIED LOAD: EQUIVALENT SHEAR FLOW
ALLOWABLES: MATERIAL ALLOWABLE STRESS
SHEAR BUCKLING ALLOWABLE STRESS D
DESIGN PROPERTIES: NONE
REMAINING STIFFNESS
PROPERTIES: NoNE
DESIGN ALGORITHM: - F.S.D. anp T.F.S.D,
SIZING: PREDICTOR APPROXIMIATION

ﬁ:>INPUT GAGE DEPENDENT TABLES.
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CPLATE

DESIGN VARIABLES: NUMBER OF LAYERS FOR EACH LAMINA
(Max. 10)

APPLIED LOAD: LAMINATE STRAIN., THREE COMPONENTS

ALLOWABLES: | COMPOSITE MATERIAL ALLOWABLES

DESIGN PROPERTIES: NONE

REMAINING STIFFNESS

PROPERTIES: NoNE

DESIGN ALGORITHM: COMPOSITE OPTIMIZATION

DESIGN CRITERIA: HILL'S CRITERION OR THE MAXIMUM
STRAIN CRITERION

SIZING: MATH-PROGRAMMING: FEASIBLE DIRECTION

ASSUMPTIONS: TOTAL LOAD IN LAMINATE REMAINS

CONSTANT DURING RESIZING
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COVER:
BRICK:

SCALAR:

SROD:

CCOVER:

REMAINING ELEMENTS

ANALOGOUS To Two PLATE:s,

MARGIN OF SAFETY CALCULATED ACCORDING
To HILL'S CRITERION

NOT DESIGNED
THE saME As ROD
AnALoGous To Two CPLATE:s
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APPENDIX B
CONVERGENCE OF THE FULLY STRESSED LESIGN

Application of the "fully stressed design" method to
practical structures normally leads to corcern with regard to the
convergence characteristics and "closeness" to minimum weight.
Section 2.2 contains illustrations of the convergence behavior
under adverse conditions. ,

A discussion of the fully stressed design method is presented
in xeferences [7] and [8]« Both papers discuss the problens
relating to convergence. Some attention has been given to the
question of verifying optimality for practical proklems. No
criterion has, however, been developed for applications to
structures with many design variables, but some of the analytical
aspects of the formulation are quite important even from a
practical standpoint.

The fully stressed design method is of iterative type and its
application in a practical design situation requlres
determinration of the following:

.o Is the method converging?

» When should the iteration be terminated?

e If it does not converge, what should be done from a

ccnstraint standpoint, so that the modified problem will

converge?

e How close to minimum weight is the solution?
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The fully stressed design,‘at’the final point of convergence,
satisfies the following set of equationms,

P, (B

where i=1,...,n and "n" is the number of design variables
present. The variables are,

A; = design variable,
P, = equivalent design 1oad,
Fy = allowable stress,

The general design problen, on the otherhand, is,

n .
rinimize - = W= . (B.2)
Z wiAi . . .
subject to the constraints: i=1
P. '
1WA ‘
9 = .Ai“f-;.2° , (B.3).

where i=1, ..., n. Before the conditions surrounding optimality
are described a few concepts are defined.

The problem of convergence and optimality of the fully
stressed design will be studied in a range where the changes in

the design variables are reasonably small. A linear expansion of
the critical forces yields,

n | |
p, () - p (k1) 37 3B (k) (B.4)
i i ~ 5=1 aAj J .

where the superscript denotes the iteration nurber. The design
variaticn matrix, B=[by ] is defined by differentiation of
equation (B.1) yielding, ‘

o =i _1 9B . (B.5)
3 Fi Ry
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The design vector Ak}  has the design variables as‘components
and the superscript indicates the 1teratlon numker. The "design
modification" vector is,

At o A(kﬂ-)."?‘(k) |

*(B.6)

which also can ke written as,

B (0)

...Bn'AA (B.7)

(n) _
AA = B, B,

where Bp should be evaluated at a point be*ween k=1 and k. The
iterative process will converge if,

D = Ble...Bn-—> 0, when n—+oco (B.8)

A sufficient condition for convergence is that for the
spectral norm of D, the following holds, -

|Dnl -+ 0, when n-+ o ‘ (B.9)
which is the case if,

IBil'< 1, for i=1l,...,n (B.10)

The spectral norm is defined as

[B] = sup lex| (B.11)
xz0 1%
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where |x| is the Fuclidian norm of x. ¥t is gquite clear from
(B.11) that all the coefficients of B; must be less than zero.
The Euclidian norm for every coiumn vector in B; must also be.
less than zero. The relations described here do not constitute a
practical method for- determination of convergence requirements,
but provide a background for tketter understanding of the
convergence problems enountered with the fully stressed design
method.,

The relation between the "fully stressed design" and the
minimumr weight design is of great concern. When these two
designs coincide, they will both be solutions tc equations (B.2)
and (B.3). It is a well-known fact that for statically
deterrinate structures equation (B.5) becomes,

by = 0 | (B.12)

in which case the right hand side of equation {(B.3) becomes a
constant and the minimization becomes a linear programming
problem. The solution is always at the vertex of "n" of the
"constraints®, As there are only "n" constraints, we find that
the fully stressed design represents a minimum.

For indeterminate structures the "internal loads" are
nonlinear functions of the design variables, and the minimization
becomes a nonlinear programming problem. The solution is not
necessarily a vertex, and the fully stressed design will
consequently not always be a minimum.

It is of great importance, in the practical situation to
deterrine how close a fully stressed design- is to the optimum,.
The Kuhn-Tucker optimality condition (xef. [5]) is,

n
W= 2, Ay Vay (B.13)
. j=1

where § is the %gradient® symkol, and n is the number of active
constraints. Equation {B.13) must be satisfied at the optimum
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point, which if coincident with the fully stressed design, would
have to be a vertex. In that case, .

T -
k=1 9% 1 |
and -
g; = 0 for i=1l,...,n (B.15)

Differentiation of the constraint equation yields,

oP.

994 1
—d = - .16
3%, 613' F, rhj (B.16)

wherso 5” is the Kronecker delta, and equation (B.14) can be
writter as,

(-8 X =W (B.17)

where I is a unit matrix, BT is the transpose of the matrix
defined in equation (B.5). The variable ) is a vector with the
Lagrange multipliers as components and W is a vector containing
the right hand sides of all the equations similar to (B.14). The
optimality condition is,

A= (I—’BT)'-]"E; >0 ‘ (B.18)

which should be interpreted as every component having to be
positive. The requirement of positive Lagrangian multipliers is
part of the Kuhn-Tucker conditions.
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It is known that for a converging fully stressed design, the

matrix I-B' is nonsingular and the optimality condition can be
written as, ’ ‘

[z+8T+8T2+ ... ]Jw>0 . (B.19)

The series inside the brackets converges rapidly when the
coefficient bj; are much smaller than unity. Finally, if the
matrix in brackets becomes diagonally dominant with positive
diagonal values, the fully stressed design is optimum.

Equation (B.18) shows that verification .of the optimality of
the fully stressed design requires computation of matrix B at the
point of convergence. An approximation of this matrix can be
produced through the use of finite differences., The coefficients
would be calculated in the following manner,

. (k1) _, (k)

L. o~ _d 3 \ B.2
bji BA; (B.20)

This approach is presently the only one available, and it can
be seen that it would ke feasible only for very small problems,
as up to "n" reanalyses could be required.

The state-of~the-art is presently such that the convergence
and optimality questions can ke addressed only from inituitive
standpoints., Experience seems to indicate that for rapidly
converging fully stressed designs, the outcome most likely is an
optimur, For slowly converging designs, however, optimality must
be investigated,
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APPENDIX C
SIGNIFICANT AUTCMATED DESIGN APPLICATIONS

This appendix describes a few applications from the field of
preliminary design. All examples have been analysed and designed
using ATLAS. These structures are dominantly of SST-like
character, with one exception. All belong to a size-range that

presently renders math-programming global optimization methods
impractical. ‘

Representative size and computing requirements are shown in
figure C.3. A more detailed description of the three airplanes
presented here can be found in references [1]-[3].

The examples are shown because of their sizes and because
there are no implications with regard to convergence., The weight
for each cycle is illustrated in figures C.1 and C.2 as a
representation of what can ke expected.

The two SST models, the Arrow Wing and the NST, as well as

the "freighter® require further study in order to establish
convergence and minimum weight.
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I 1DENTIFICATION SIZE
Gich ‘NAME NUMBER NUMBER
DOF D.V.
F - s
1} METAL;
ARROW WING 9000 20000
2 I NST; base-line 8000 16000
3 | NST: substructure 8000 10000
4 | MULTI-MISSION
FREIGHTER 7400 4y
5 | COMPOSITE ;
ARROW WING 2008 6000

ORDER OF MAGNITUDE :
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i
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>
O
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]
w
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s
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Figure C.3. Computer Time Requirements for ‘One Cycle
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APPENDIX D
COMPOSITE TERMINOLOGY

The ATLAS system has two coluposite elements that are
identified by the names CPLATE and CCOVER.

The CPLATE is a triangular or quadrilateral laminated
constant-strain membrane plate. Each plate element (laminate) is
comprised of up to 10 orthotropic laminas. Each lamina is
defined by,

o fiber direction (o)
« material properties
» temperature

o number of 1ayers

The layer thickness is part of the composite material
definition (see ref. [10]}.

The CCOVER element is built up from two CPLATE elements
separated by rigid posts.



/ Yy, for y)

= Lnum layers
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Figure D.l. Typical Lamina “i*

The orthotropic constitutive matrix for lamina *I* is,

Dj = | Epn/(1-VppVop)  V12Epp/(1-VpVa1) 0
VipEgp / (1-V12V1)  Ez2 /(1-V12Vy1) 0
’ 0 Gyp

where engineering strains are used and where,

Va1Ey; =V E
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APFENDIX E
DESIGN THEORY SUMMARY
TheIATLAS Design Module containsifout diffe:ent functions:
s Fully stressed design, F.S.D.; |
s Thermal fully stressed design, T.F.S.D.}
» Composite optimization;
» Ucer SPecified changes.,

Each of these automated design methods is of reanalysis type;
i.e. changes in internal loads due to changes in thicknesses and
areas are considered through a "new"” stress analysis. The Design
Module execution is consequently a part of the design process
which, in addition, involves the stress analysis modules, It is
primarily intended to be a part of the design process which
involves the stress analysis modules. It is primarily intended
for preliminary design applications. The first three functions
above are all of iterative type.

The "closeness" to minimum weight and the convergence
characteristics are, of course, of great importance. It is,
however, presently not possible to give general rules for the
convergence behavior. The successful application of these
methods will, therefore, ultimately have to depend on engineering
judgerert,

The Design Module input data has been structured in such a
manner that the convergence behavior of the structure can be
changed during the design process, The input data contain the
following constraints:

» upper bounds

s lower bounds

» fixed data

e input margins of safety

» regional exclusion from resizingr

All these data sets can be modified or changed through an
update capability that allows for partial input data sets., This
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feature, in addition to the fourth function specified above,
allows the user to constrain the process or to change the
direction in which a *"design" is developing.

The F.S.D. and the T.F.S.D. methods produce equivalent
margins of safety that are based on the resize algorithm,

old

.= sy O (1+ms, p), (E.1)

where MS is calculated and MS;,, is an input margin of safety.
The design variables involved are thicknesses and areas.
Additioral finite element properties are changed in the same
proportions as the associated design variables are modified.

The F.S.D. method considers both strength and buckling
requirerents, Hill's criterion is used for strength, and user
specified interaction criteria are applied for buckling. These
two criteria are descrited in sections 3.1.1 and 3.1l.2. Margins
of safety produced by these criteria-are based on the assumption
of constant internal loads. The buckling critericn, however, can
contain gage dependent allowable stresses., These can be of 1nput
type, table allowables, or they can be calculated local
allowables. Both cases lead to a resize requirement that
involves solutions of nonlinear equations. The principle of the
soplution of these equations shown in section 3.1.3.

The T.F.S.D. method considers only strength requirements
which are based on Hill's criterion. The method is intended for
preliminary design of structures that are subjected to both
mechanical and thermal loads at the same time. The method is
described in section 3.2. It is based on the assumption that
mechanical loads and thermal stresses remain unchanged during
resizing. The thermal stresses are considered to ke of the same
order of magnitude as the mechanical stresses.

The composite optimization is intended for finite element
models containing CPLATE and CCOVER elements. This optimization
is of local type, and lamina thicknesses are design variables.
Regions containing the same type of elements with the same nunber
of laminas and user-specified fixed fiber directions can be
defined in the input data. Section 4.1 contains a description of
these definitions and reference [ 10] describes the details.
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The optimization is performed for minimum weight. The method:
of feasible direction is used and the constraints are of strength
type. These strength constraints can be based on either Hill's
criterion or on the "maximum strain criterion.® The local
optimization is based on the assumption that total laminate loads

remain constant. The changes in internal loads are introduced in
the "next" stress analysis., ' '

The function that changes the finite element properties
according to user specifications is intended as a means of
introducing design requirements other than strength and stability
based element criteria. This function consists of two ,
algorithms, one that allows factoring of element subsets (flutter
changes, e.9:) and one that allows individual changes to the
finite element properties, This provides a capability for model
changes that does not require "new" finite element input data.
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